CRYOGENICS HAZARD, RISKS AND DANGER BASIC INFORMATION


Cryogenics, or low-temperature technology, is the science of producing and maintaining very low temperatures usually below 120 K, as distinct from traditional refrigeration which covers the temperature range 120 to 273.1 K. At or below 120 K, the permanent gases including argon, helium, hydrogen, methane, oxygen and nitrogen can be liquefied at ambient pressure.

Any object may be cooled to low temperatures by placing it in thermal contact with a suitable liquefied gas held at constant pressure. Applications can be found in food processing, rocket propulsion, microbiology, electronics, medicine, metal working and general laboratory operations.

Cryogenic technology has also been used to produce low-cost, high-purity gases through fractional condensation and distillation. Cryogens are used to enhance the speed of computers and in magnetic resonance imaging to cool high conductivity magnets for non-intrusive body diagnostics. Low-temperature infrared detectors are used in astronomical telescopes.

Typical insulating materials include purged rockwool or perlite, rigid foam such as foam-glass or urethane, or vacuum. However, because perfect insulation is not possible heat leakage occurs and the liquefied gas eventually boils away. Uncontrolled release of a cryogen from storage or during handling must be carefully considered at the design stage. The main hazards with cryogens stem from:

• The low temperature which, if the materials come into contact with the body, can cause severe tissue burns. Flesh may stick fast to cold uninsulated pipes or vessels and tear on attempting to withdraw it. The low temperatures may also cause failure of service materials due to embrittlement; metals can become sensitive to fracture by shock.

• Asphyxiation (except with oxygen) if the cryogen evaporates in a confined space.

• The very large vapour-to-liquid ratios so that a large cloud, with fog, results from loss of liquid.

• Catastrophic failure of containers as cryogen evaporates to cause pressure build-up within the vessel beyond its safe working pressure (e.g. pressures ≤280 000 kPa or 40 600 psi can develop when liquid nitrogen is heated to ambient temperature in a confined space).

• Flammability (e.g. hydrogen, acetylene, methane), toxicity (e.g. carbon dioxide, fluorine), or chemical reactivity (fluorine, oxygen).

• Trace impurities in the feed streams can lead to combination of an oxidant with a flammable material (e.g. acetylene in liquid oxygen, solid oxygen in liquid hydrogen) and precautions must be taken to eliminate them.

• Several materials react with pure oxygen so care in selection of materials in contact with oxygen including cleaning agents is crucial.

No comments:

Post a Comment